Section 2: Common Cybersecurity Controls
Please Note: Cybersecurity is a rapidly evolving field. This document was last updated on February 2, 2019. Some of the technical guidance within this document may change, and some of the risks defined may increase or decrease in their potential likelihood or impact.
Improving cybersecurity in any organization often requires moving from ad-hoc responses to intentional planning. Many of the technical steps that an organization can take to improve its cybersecurity posture are relatively simple – some can even be automated for an entire organization with the click of a button. But making any type of organization-wide change often requires a cultural change as well. Creating an organizational policy outlining cybersecurity expectations for staff can help usher in this cultural change. The active participation of staff is critical in ensuring that changes stick.
This section will provide a series of technical controls and best practices a LRO can use to mitigate common cybersecurity issues, such as the three common threat areas described previously. A control is a tool, technique, or policy that makes hackers work harder, or makes a cybersecurity risk less likely to materialize.
No control is 100% effective, and no system can ever be 100% secure. The controls described in this document may age over time, and in some cases may become obsolete.
This section will briefly describe a control, then provide an overview of the time and complexity required for implementation. Each control includes a "Baseline" and "Baseline +" policy recommendation, where "Baseline+" requires a deeper level of staff engagement. These are not black and white distinctions, but are meant to illustrate how organizations can require different levels of adherence to specific practices.
LROs can use Appendix A to design a policy for these controls that is appropriate for their organization. Cybersecurity policies are a place for an organization to document expectations for its staff. These policies can also dictate certain technical requirements (e.g. "all employees must enable two-factor authentication for email accounts" or "employees may not email HR files to personal email accounts"). Appendix A of this document provides a basic template for such a policy, with suggestions for how to tailor the language to your own organization.
Not all security technologies are appropriate for all contexts, but the controls that follow are widely accepted as low-effort and high-impact solutions useful for most types of organizations. Given that LROs are not likely to be targeted by sophisticated or highly-motivated attackers (such as governments), these mostly context-agnostic controls should help to increase the security of an LRO's data and systems.
Appendix B provides additional information and links to further guidance on how to implement controls and select the systems and accounts requiring protection.
How to Use This Guide
1.Read through the controls (in Section 2) and best practices (in Section 3) and understand what types of risks they mitigate. Section 2 controls are generally more technical, while the best practices in Section 3 are more generally designed to serve as a template for policy language for specific practices your organization may need to follow (i.e. travel policy or incident response). 2.Select the level of controls appropriate for your organization, and use those controls and best practices described in Section 3 to build your security policy. Appendix A can help walk you through considerations for each control, and help you identify if Baseline or Baseline+ measures are correct for your organization. 3.Implement security controls within your organization based upon your new security policy. Appendix B offers additional guidance on how to implement each of the controls.You can jump between the control descriptions in Section 2, the policy assistance in Appendix A, and the implementation guidance in Appendix B by using the links below each headline.
Set policy for this control here.
Additional implementation guidance can be found here.
Baseline: Require multi-factor authentication for all organization-managed accounts. Turn on login alerts where offered. | | |
What time and technical sophistication is required to set up this control? | Who enables this control? | What risks does this control mitigate? |
Low Sophistication Less than 1 hour | System administrators and individuals set it up | Phishing/Account Takeovers |
Baseline +: Require multi-factor authentication for all organization-managed accounts. Require the use of password managers. Turn on account monitoring where offered. | | |
Moderate Sophistication Less than 1 day | System administrators and individuals set it up | Phishing/Account Takeovers |
NOTE: As a general rule, do not recycle the same password across multiple accounts. When choosing a password, pick something unique, and make it long. You should focus more on length than on adding in hard-to-remember characters or complex upper/lower case combinations. The use of a "passphrase" - a string of at least 4 unrelated words - instead of a password is encouraged.
Multi-factor Authentication
Multi-factor authentication (MFA) is a tool that offers additional security online accounts by requiring an extra layer of user verification. When MFA is enabled for an account, a user must not only enter a username and password, but they must also verify additional "factors" – like a code texted to their phone – that prove they are the true owner of the account. When accounts have MFA enabled, attackers who attempt to log in using stolen usernames and passwords will have a much harder time succeeding.
LROs should encourage employees to enable MFA on as many accounts as possible, but should mandate the use of MFA on critical accounts like email, data storage systems storing HR files, and financial accounts. Depending on the platform, administrators of centrally managed accounts (like G Suite) can flip a technical switch that forces all users to enable MFA. This technical solution can help LROs ensure staff use MFA, rather than hoping that staff will follow written policy. LROs can also require MFA when staff log into organization-owned computers, a policy that lowers the risk of a security incident in the event of loss or theft of devices.
MFA "factors" come in many forms, but the three most common types are SMS-based, application-based, and physical tokens. While there are substantial differences between these three methods, each requires a different level of effort to set up and maintain. In choosing an MFA method, it is important to consider the needs and constraints of your organization. For example, while token-based MFA is the most secure method, your organization may not have the budget to purchase security keys, and so enabling SMS-based MFA will be a more realistic fit, and will still be a more secure option than not enabling any form of MFA. A security control that is not (or cannot be) used consistently is not a good security control.
Below you will find a brief description of each of these MFA methods:
- SMS: After entering their username and password, a user will receive a prompt to verify a code (usually between 6-8 digits) sent via SMS to their mobile device. It is important to note this method is widely considered to be less secure than other methods (attackers have increasingly found ways to intercept text messages containing these verification codes). As such, SMS-based MFA is slowly being phased out. Nevertheless, SMS-based MFA is still better than no MFA at all, so LROs should absolutely enable it if it is the only option available for a service.
- Authenticator App: Companies like Google, Microsoft, Duo, and others offer free applications that generate a one-time, time sensitive code on your phone to serve as a "second factor" for individual user accounts. After a user enters their username and password, they will be prompted to enter a code generated by the app of their choosing. Authenticator apps are easy to set up, and can be quickly configured to work with many common web services. Apps have many advantages over SMS as an MFA method, but one of the most important is that the app will continue to generate codes even when the device is offline or out of cell range. This means apps are a particularly good option for LROs with poor cellular connection or with staff that travels internationally.
- Token: Physical tokens are the most secure form of MFA. They generally consist of small pieces of hardware that plug directly into a computer (or connect by Bluetooth), and they can be carried around on a keychain. Tokens can be more complicated to set up, but once configured, they eliminate the need to enter additional codes following a username and password combination, since connecting the token to your computer automatically generates a long and complex code. Unlike MFA and authenticator apps, tokens do come with a cost (each token runs between $15-50), but if you can afford it, the investment is worth the security payoff.
A list of common websites with MFA and links to instructions on how to enable it can be found here: https://twofactorauth.org/.
Organizations should note that in the event of a lost second factor (like your phone or hardware token), account recovery becomes much more challenging with MFA enabled. Your staff may need to reset their account credentials by going to your IT staff, or through the help staff of a specific service.
Password Managers
It is really difficult to create strong passwords, and even more difficult to remember them. For this reason, organizations should encourage (or require) employees to use password manager software like LastPass, especially in cases where a service does not offer MFA. Password managers help users generate long, random passwords and then stores them for users across devices. Attackers may still get ahold of these passwords through phishing or other means, but password managers make it much harder for attackers to guess or "brute force" a password (using a computer algorithm to make many guesses in a short period of time) since the software generates and remembers a strong, unique password on the user's behalf. Password managers can (and should!) be used in tandem with MFA, Moreover, many offer "enterprise" versions (for a small fee) that allow organizations to set use policies and even enable users to safely exchange passwords for shared accounts. While MFA provides a greater degree of security for an individual account, password managers significantly diminish the risk that one compromised account will lead to other compromised accounts due to recycled passwords.
Account Monitoring
Many common services offer suspicious login alerts, usually in the form of a push notification or an email that lets users know when someone has tried to access their account from a new device or location. Individuals can manually turn on these alerts or organizations can set technical policies for organization-managed accounts that require these alerts by default. In the event of an account compromise, these login alerts can substantially minimize the time an attacker has unauthorized access to an account by prompting a user to change their password and lock out the attacker.
Learn How to Spot a Phishing Email MFA can help prevent attackers from accessing an account even when they have a user's account credentials. But, in cases where MFA is not enabled or not available, a username and password is all the attacker needs to break in. One of the most common ways attackers get their hands on user credentials is via phishing emails. Learning how to spot a phish is the best defense against losing control of accounts. The Electronic Frontier Foundation has a guide on how to spot a phishing email or scam here: https://ssd.eff.org/en/module/how-avoid-phishing-attacksIn general, when you receive an email, do not click on links or open files you do not recognize, even if it came from a trusted source. If you're unsure about the origin of a link or document, it is usually worth a quick call or message (through a channel other than email) to the sender. It only takes a minute, and can save hours of headache in the case that your account does become compromised in some way.
Set policy for this control here.
Additional implementation guidance can be found here.
Baseline: Force automatic updates for all operating systems, productivity software, and web browsers, and require other software updates to be installed as quickly as possible. Ensure all software licenses are renewed in a timely fashion. | | |
What time and technical sophistication is required to set up this control? | Who enables this control? | What risks does this control mitigate? |
Low Sophistication Less than 1 hour | Individuals and system administrators set it up | Malware |
Baseline +: Force automatic updates for all operating systems, productivity software, and web browsers, and require other software updates to be installed as quickly as possible. Auto-renew all critical software licenses. | | |
Moderate Sophistication Ongoing | System administrators set it up | Malware |
Enabling automatic updates is a simple and powerful cybersecurity control. While some larger organizations with more robust IT infrastructures may need to carefully consider this control (sometimes updates may interfere with the function of custom-built information systems), most LROs should enable automatic updates. There is a small chance an update might create problems for a system – particularly older computers or devices. However, problems with updates are often patched quickly. Out-of-date software is the primary way attackers can take over devices, steal or delete data, or otherwise interrupt systems, websites, and devices. This is because as vulnerabilities in various pieces of software are found, companies issue updates (or "patches") to fix those security flaws. Software that has not been updated retains those security flaws, and becomes increasingly vulnerable as attackers build malicious software that takes advantage of those known vulnerabilities.
Most software now defaults to enabling automatic updates. An organization's security policy should require this function on all operating systems, web browsers, email clients, productivity software (like Microsoft Office), instant messengers, or other commonly-used programs. This includes updates for mobile device software.
Some LROs may use expired software licenses to save money. Without a valid license, software is often not eligible for updates, exposing the organization to the risks described above. While software licenses can be expensive, many non-profits are eligible for free or reduced-costs software. Organizations like TechSoup (http://www.techsoup.org/) are an easy source of reduced-price software for eligible non-profits. Popular software and services suites like Microsoft Office, Salesforce, and Google's G-Suite are available at greatly reduced prices for eligible non-profit organizations.
A Note on Antivirus Software Organizations may choose to purchase antivirus software, but most major operating systems build in much of the protection LROs need to prevent malware infections. At a bare minimum, your organization should enable either Windows Defender or Apple's Gatekeeper – the default security services on both major operating systems. These services will harden most laptops and desktops against common threats.
How to enable Windows Defender: https://support.microsoft.com/en-us/help/17464/windows-defender-help-protect-computer How to enable Gatekeeper on OSX: https://support.apple.com/en-us/HT202491It is critical to allow these services to run their automatic updates. Without the latest information, these services cannot protect your device against new forms of malicious software.
Set policy for this control here.
Additional implementation guidance can be found here.
Baseline: Migrate organizational email to a cloud-based provider | | |
What time and technical sophistication is required to set up this control? | Who enables this control? | What risks does this control mitigate? |
Moderate Sophistication Variable time – days or weeks | Organizations set it up | Malware, Phishing, Web-Based Attacks, Data Theft, etc. |
Baseline +: Migrate organizational email, data storage, and productivity software to a cloud-based provider | | |
Moderate Sophistication Variable time – weeks | Organizations set it up | Malware, Phishing, Web-Based Attacks, Data Theft, etc. |
Building and maintaining technical resources for your organization requires a large investment in time, money, and energy. Even managing a "simple" service like an email server can be very complicated, and keeping any of these systems up to date and secure is often a task beyond the capabilities of many LROs. It is widely recognized that moving to cloud-based technologies is a good way to offload many of the more difficult and resource intensive tasks related to managing these services, in turn allowing an organization's employees to focus on their mission priorities. Cloud service providers like Google, Amazon, Microsoft, and Salesforce employ some of the best security teams in the world, and are constantly improving the security of their services. They also provide secure backups of data, which means that in the event of a breach or another data loss event, a previous version of that data is still available. Most IT needs of an LRO, including web hosting, email, productivity tools, and storage, can be migrated to cloud-based services. Nevertheless, these services can be expensive. Thankfully many cloud service providers offer free or discounted services for nonprofits and other public-interest organizations. Some examples of those services include:
- Productivity Suites and Email:
- Contact/Customer Relationship Management: